解:當(dāng)?$\triangle ABC$?是鈍角三角形時(shí),猜想?$a^2+b^2<c^2$?
證明:過點(diǎn)?$A$?作?$AD\perp BC$?的延長線于點(diǎn)?$D$?
設(shè)?$CD = x$?
?$ $?在?$Rt\triangle ABD$?中,?$AD^2=c^2-(a+x)^2$?
?$ $?在?$Rt\triangle ADC$?中,?$AD^2=b^2-x^2$?
∴?$c^2-(a+x)^2=b^2- x^2$?
化簡得?$a^2+b^2=c^2-2ax$?
∵?$a>0,$??$x>0,$?∴?$2ax>0$?
∴?$a^2+b^2<c^2$?