解:連接?$CD$?
∵?$?ABC$?是直角三角形,?$∠B=36°$?
∴?$∠A=90°-36°=54°$?
∵?$AC= DC$?
∴?$∠ADC=∠A=54°$?
∴?$∠ACD=180°-∠A-∠ADC=72°$?
∴?$∠BCD=∠ACB-∠ACD=18°$?
∵?$∠ACD、$??$∠BCD$?分別是?$\widehat {AD },$??$\widehat {DE }$?所對的圓心角
∴?$\widehat {AD }$?的度數(shù)為?$72°,$??$\widehat {DE }$?的度數(shù)為?$18°$?