$解:(2)①將x=0代入y=3x?6,得y=?6$
$∴E(0,?6)$
$BQ將△BDE的分為1:2兩部分時(shí):$
$當(dāng)S_{△BEQ}:S_{△BDQ}=1:2時(shí)$
$S_{△BQE}:S_{△BDE}=1:3$
$∴EQ=\frac{1}{3}DE$
$∵D(4,6),E(0,?6),∴點(diǎn)Q的橫坐標(biāo)為0+\frac{1}{3}×(4?0)=\frac{4}{3}$
$縱坐標(biāo)為?6+\frac{1}{3}×(6+6)=?2,∴Q(\frac{4}{3}?2)$
$當(dāng)S_{△BDQ}:S_{△BEQ}=1:2時(shí),S_{△BQE}:S_{△BDE}=2:3$
$∴EQ=\frac{2}{3}DE$
$∵D(4,6),E(0,?6),∴點(diǎn)Q的橫坐標(biāo)為0+\frac{2}{3}×(4?0)=\frac{8}{3}$
$縱坐標(biāo)為?6+3×(6+6)=2,∴Q(\frac{8}{3},2)$
$綜上可知,點(diǎn)Q的坐標(biāo)為(\frac{4}{3}?2)或(\frac{8}{3},2)$
$②(3,3)或(\frac {18}{7},\frac {12}{7})$