解: (1) 把$A(5,m)$代入$y=-x + 3,$得$m=-5 + 3=-2,$則$A(5,-2)。$
點$A$向左平移$2$個單位長度,再向上平移$4$個單位長度,得到點$C,$則$C(3,2)。$
過點$C$且與$y = 2x$平行的直線交$y$軸于點$D,$直線$CD$的表達式可設為$y = 2x + b,$把$C(3,2)$代入得$6 + b = 2,$解得$b=-4,$所以直線$CD$的表達式為$y = 2x - 4。$
(2) 在$y=-x + 3$中,當$x = 0$時,$y = 3,$則$B(0,3),$在$y = 2x - 4$中,當$y = 0$時,$2x - 4 = 0,$解得$x = 2,$則直線$CD$與$x$軸的交點坐標為$(2,0)。$
易知直線$CD$平移到經過點$B$時的直線表達式為$y = 2x+3,$當$y = 0$時,$2x + 3 = 0,$解得$x=-\frac{3}{2},$則直線$y = 2x + 3$與$x$軸的交點坐標為$(-\frac{3}{2},0),$所以直線$CD$在平移過程中與$x$軸交點的橫坐標的取值范圍為$-\frac{3}{2}\leq x\leq2。$