解:
(1)
∵點$P(1,a)$在直線$y = 3x$上,
∴$a = 3,$即$P(1,3)。$
∵直線$y = kx(0\lt k\lt1)$上有一點$Q(b,1),$
∴$bk = 1,$解得$b=\frac{1}{k},$
∴$Q(\frac{1}{k},1)。$
(2)由題意知,$A(1,0),$$B(\frac{1}{k},0),$
∴$S_{\triangle APQ}=\frac{1}{2}\times3\times(\frac{1}{k}-1),$
$S_{\triangle OPQ}=S_{\triangle AOP}+S_{\triangle APQ}+S_{\triangle ABQ}-S_{\triangle BOQ}=\frac{1}{2}\times1\times3+\frac{1}{2}\times3\times(\frac{1}{k}-1)+\frac{1}{2}\times(\frac{1}{k}-1)\times1-\frac{1}{2}\times\frac{1}{k}\times1=\frac{3}{2k}-\frac{1}{2}。$
∵$\triangle APQ$的面積是$\triangle OPQ$面積的$\frac{3}{4},$
∴$\frac{1}{2}\times3\times(\frac{1}{k}-1)=(\frac{3}{2k}-\frac{1}{2})\times\frac{3}{4},$
可得$\frac{1}{k}=3,$
∴$k=\frac{1}{3}。$
(3)存在。點$D$的坐標(biāo)為$(\frac{1}{2},\frac{3}{2})$或$(-\frac{1}{2},-\frac{3}{2})。$
解析:設(shè)$D(m,3m),$當(dāng)$D$在第一象限時,
∵$S_{\triangle ODG}=\frac{1}{2}S_{\triangle OPG},$
∴$OD=\frac{1}{2}OP,$
∴點$D$是$OP$的中點,
∴$D(\frac{1}{2},\frac{3}{2});$
當(dāng)$D$在第三象限時,如圖中點$D',$由題意知$OD = OD',$
∴$D'(-\frac{1}{2},-\frac{3}{2})。$
綜上所述,$D$的坐標(biāo)為$(\frac{1}{2},\frac{3}{2})$或$(-\frac{1}{2},-\frac{3}{2})。$