解:
(1) 根據(jù)題圖①與題意可得,當(dāng)點$P$由$B→C$運動時,$\triangle PBF$的面積逐漸增大;當(dāng)點$P$由$C→D$運動時,$\triangle PBF$的面積不變,此時,$\triangle PBF$的面積為最大值$6;$當(dāng)點$P$由$D→E$運動時,$\triangle PBF$的面積逐漸減小. 當(dāng)點$P$在$CD$上時,$S$為最大值$6,$即$S = \frac{1}{2}\times BF\times 4 = 6,$解得$BF = 3$cm. 當(dāng)$t = 1$時,$S = \frac{3}{2}$$cm^2,$$BP = a$cm,則有$\frac{1}{2}\times BF\times BP = \frac{3}{2},$即$\frac{1}{2}\times 3a = \frac{3}{2},$解得$a = 1.$ 故線段$BF$的長為$3$cm,$a$的值為$1。$
(2) 當(dāng)$0 < t\leq4$時,點$P$在$BC$邊上運動,$S = \frac{1}{2}\times BF\times BP = \frac{1}{2}\times 3\times t = \frac{3}{2}t;$當(dāng)$4 < t\leq8$時,點$P$在$CD$邊上運動,此時面積$S = \frac{1}{2}\times BF\times BC = \frac{1}{2}\times 3\times 4 = 6;$當(dāng)$8 < t\leq10$時,點$P$在線段$DE$上運動,$S = \frac{1}{2}\times BF\times AP = \frac{1}{2}\times 3\times(12 - t)=18 - \frac{3}{2}t.$ 綜上,$S=\begin{cases}\frac{3}{2}t(0 < t\leq4) \\6(4 < t\leq8) \\18 - \frac{3}{2}t(8 < t\leq10)\end{cases}。$
(3) 當(dāng)$S = 4$$cm^2$時,①當(dāng)$0 < t\leq4$時,$\frac{3}{2}t = 4,$解得$t = \frac{8}{3},$符合題意. ②當(dāng)$8 < t\leq10$時,$18 - \frac{3}{2}t = 4,$解得$t = \frac{28}{3},$符合題意. 故當(dāng)$t = \frac{8}{3}$或$t = \frac{28}{3}$時,$\triangle PBF$的面積$S$為$4$$cm^2。$