$證明:(2)因?yàn)镃D\perp AB$
$所以\angle CDA=\angle CDB = 90^{\circ}$
$在Rt\triangle ACD中,由勾股定理得$
$AD^{2}+DC^{2}=AC^{2},所以AC^{2}=1^{2}+2^{2}=5$
$在Rt\triangle BCD中,由勾股定理得CD^{2}+BD^{2}=BC^{2}$
$所以BC^{2}=2^{2}+4^{2}=20$
$在\triangle ACB中,AC^{2}+BC^{2}=5 + 20 = 25$
$又因?yàn)锳B^{2}=5^{2}=25,所以AC^{2}+BC^{2}=AB^{2}$
$由勾股定理逆定理得\triangle ACB是直角三角形$
$且\angle ACB = 90^{\circ},所以C是A,B兩點(diǎn)的強(qiáng)勾股點(diǎn)$
$(3)2或\frac {16}{5}或\frac {34}{5}或8$