(1)解:因為$AD$是$BC$邊上的高,所以$\angle ADB = \angle ADC = 90^{\circ}。$
在$Rt\triangle ADC$中,因為$AC = 13,$$CD = 5,$根據(jù)勾股定理$AD^{2}=AC^{2}-CD^{2},$可得$AD^{2}=13^{2}-5^{2}=144,$所以$AD = 12。$
在$Rt\triangle ADB$中,因為$AB = 20,$$AD = 12,$根據(jù)勾股定理$BD^{2}=AB^{2}-AD^{2},$可得$BD^{2}=20^{2}-12^{2}=256,$所以$BD = 16。$
則$BC = BD + CD = 16 + 5 = 21,$所以$S_{\triangle ABC}=\frac{1}{2}BC\cdot AD=\frac{1}{2}\times21\times12 = 126。$
(2)證明:因為$\triangle ADC$沿$AD$所在的直線翻折得到$\triangle ADE,$所以$AC = AE,$$DC = DE。$
在$Rt\triangle ADC$中,由勾股定理得$AC^{2}=AD^{2}+DC^{2},$在$Rt\triangle ADB$中,由勾股定理得$BD^{2}=AB^{2}-AD^{2}。$
所以$AB^{2}-AC^{2}=AB^{2}-(AD^{2}+DC^{2})=AB^{2}-AD^{2}-DC^{2}=BD^{2}-DE^{2}=(BD - DE)(BD + DE)。$
因為$BE = BD - DE,$$BC = BD + DC = BD + DE,$所以$AB^{2}-AC^{2}=BE\cdot BC。$