亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第49頁

第49頁

信息發(fā)布者:
$12$
證明:在$BC$的延長線上截取$CH = AC,$在$BC$上截取$CE = CA。$
因?yàn)?BC = 2AC,$所以$BE = CE = AC。$
因?yàn)?AC = CH,$所以$\angle H=\angle CAH,$又因?yàn)?\angle ACB = 2\angle B,$所以$\angle H=\angle B,$所以$AH = AB。$
又$HC = BE,$所以$\triangle AHC\cong\triangle ABE(SAS),$所以$AE = AC,$所以$AE = AC = CE,$$\triangle ACE$是等邊三角形,所以$\angle ACB = 60^{\circ},$$\angle B = 30^{\circ},$所以$\angle BAC = 90^{\circ}。$
(2) 證明:延長$CE$與$BA$交于點(diǎn)$F。$
因?yàn)?\angle ABC = 45^{\circ},$$AB = AC,$所以$\angle BAC = 90^{\circ}。$
因?yàn)?CE\perp BD,$所以$\angle BAC=\angle DEC。$
又因?yàn)?\angle ADB=\angle CDE,$所以$\angle ABD=\angle DCE。$
在$\triangle BAD$和$\triangle CAF$中,$\begin{cases}\angle BAD=\angle CAF \\ AB = AC \\ \angle ABD=\angle ACF\end{cases},$
所以$\triangle BAD\cong\triangle CAF(ASA),$所以$BD = CF。$
因?yàn)?BD$平分$\angle ABC,$$CE\perp DB,$
在$\triangle BEF$和$\triangle BEC$中,$\begin{cases}\angle FBE=\angle CBE \\ BE = BE \\ \angle BEF=\angle BEC\end{cases},$
所以$\triangle BEF\cong\triangle BEC(ASA),$所以$CE = EF,$所以$BD = 2CE。$
(3) $S_{\triangle ACE}=\frac{1}{8}m$
解: 方法1:(截長法)
在$CD$上取點(diǎn)$E,$使$DE = BD,$連接$AE。$
因?yàn)?AB + BD = DC,$所以$CE = AB。$
因?yàn)?AD\perp BC,$$DE = BD,$所以$AB = AE,$則$AE = CE,$$\angle B=\angle AED=\angle C+\angle CAE = 2\angle C。$
因?yàn)?\angle BAC = 120^{\circ},$所以$\angle B+\angle C=2\angle C+\angle C = 60^{\circ},$解得$\angle C = 20^{\circ}。$
方法2:(補(bǔ)短法)
延長$DB$至點(diǎn)$F,$使$BF = AB,$連接$AF。$
因?yàn)?AB + BD = DF = CD,$所以$AF = AC,$$\angle C=\angle F=\frac{1}{2}\angle ABC。$
因?yàn)?\angle BAC = 120^{\circ},$所以$\angle ABC+\angle C=\angle ABC+\frac{1}{2}\angle ABC = 60^{\circ},$解得$\angle ABC = 40^{\circ},$所以$\angle C = 20^{\circ}。$