(2) 證明:延長$CE$與$BA$交于點(diǎn)$F。$
因?yàn)?\angle ABC = 45^{\circ},$$AB = AC,$所以$\angle BAC = 90^{\circ}。$
因?yàn)?CE\perp BD,$所以$\angle BAC=\angle DEC。$
又因?yàn)?\angle ADB=\angle CDE,$所以$\angle ABD=\angle DCE。$
在$\triangle BAD$和$\triangle CAF$中,$\begin{cases}\angle BAD=\angle CAF \\ AB = AC \\ \angle ABD=\angle ACF\end{cases},$
所以$\triangle BAD\cong\triangle CAF(ASA),$所以$BD = CF。$
因?yàn)?BD$平分$\angle ABC,$$CE\perp DB,$
在$\triangle BEF$和$\triangle BEC$中,$\begin{cases}\angle FBE=\angle CBE \\ BE = BE \\ \angle BEF=\angle BEC\end{cases},$
所以$\triangle BEF\cong\triangle BEC(ASA),$所以$CE = EF,$所以$BD = 2CE。$
(3) $S_{\triangle ACE}=\frac{1}{8}m$