$ (1) 證明: $
過(guò)點(diǎn)$A$作$AH\perp BC,$垂足為$H。$
因?yàn)?CD$是$\triangle ABC$的高,所以$\angle AHB = \angle AHC=\angle BDC = 90^{\circ}。$
在$Rt\triangle ABH$中,$\angle BAH+\angle ABC = 90^{\circ},$在$Rt\triangle BCD$中,$\angle BCD+\angle ABC = 90^{\circ},$所以$\angle BAH=\angle BCD。$
又因?yàn)?\angle BAC = 2\angle BCD,$所以$\angle BAC = 2\angle BAH,$則$\angle BAH=\angle CAH。$
在$\triangle ABH$和$\triangle ACH$中,$\begin{cases}\angle AHB=\angle AHC\\AH = AH\\\angle BAH=\angle CAH\end{cases},$所以$\triangle ABH\cong\triangle ACH(ASA),$所以$BH = CH。$
因?yàn)?\angle APC = 60^{\circ},$$\angle AHP = 90^{\circ},$所以$\angle PAH=90^{\circ}-60^{\circ}=30^{\circ},$在$Rt\triangle APH$中,$PA = 2PH。$
因?yàn)?PB=PH - BH,$$PC=PH + HC,$且$BH = CH,$所以$PB + PC=PH - BH+PH + CH=2PH=PA。$
$(2)②:PC-PB=PA$
$③:PB-PC=PA$