證明: (1)因為$\angle ABC = 80^{\circ},$$BD = BC,$
所以$\angle BDC=\angle BCD=\frac{180^{\circ}-\angle ABC}{2}=\frac{180 - 80}{2}=50^{\circ}。$
在$\triangle ABC$中,$\angle A+\angle ABC+\angle ACB = 180^{\circ},$$\angle A = 40^{\circ},$
所以$\angle ACB=180^{\circ}-\angle A-\angle ABC=180 - 40 - 80 = 60^{\circ}。$
因為$CE = BC,$
所以$\angle EBC = \angle BEC,$$\angle EBC = 60^{\circ},$
所以$\angle ABE=\angle ABC-\angle EBC=80 - 60 = 20^{\circ}。$
(2)$\angle BEC+\angle BDC = 110^{\circ}。$
理由:設$\angle BEC=\alpha,$$\angle BDC=\beta。$
在$\triangle ABE$中,$\alpha=\angle A+\angle ABE = 40^{\circ}+\angle ABE。$
因為$CE = BC,$所以$\angle CBE=\angle BEC=\alpha,$$\angle ABC=\angle ABE+\angle CBE = 40^{\circ}+2\angle ABE。$
在$\triangle BDC$中,$BD = BC,$所以$\angle BDC+\angle BCD+\angle DBC = 2\beta+40^{\circ}+2\angle ABE = 180^{\circ},$$\beta = 70^{\circ}-\angle ABE。$
所以$\alpha+\beta=40^{\circ}+\angle ABE+70^{\circ}-\angle ABE = 110^{\circ},$即$\angle BEC+\angle BDC = 110^{\circ}。$