亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第19頁

第19頁

信息發(fā)布者:
$3$
已知:如圖,$\angle C=\angle C' = 90^{\circ},$$AC = A'C',$$AD$平分$\angle BAC,$$A'D'$平分$\angle B'A'C',$$AD = A'D'。$
求證:$\triangle ABC\cong\triangle A'B'C'。$
證明:在$Rt\triangle ACD$和$Rt\triangle A'C'D'$中,$\begin{cases}AC = A'C'\\AD = A'D'\end{cases},$$\therefore Rt\triangle ACD\cong Rt\triangle A'C'D'(HL),$$\therefore\angle CAD=\angle C'A'D'。$
$\because AD$平分$\angle BAC,$$A'D'$平分$\angle B'A'C',$$\therefore\angle CAB = 2\angle CAD,$$\angle C'A'B' = 2\angle C'A'D',$$\therefore\angle CAB=\angle C'A'B'。$
在$\triangle ABC$與$\triangle A'B'C'$中,$\begin{cases}\angle CAB=\angle C'A'B'\\AC = A'C'\\\angle C=\angle C'\end{cases},$$\therefore\triangle ABC\cong\triangle A'B'C'(ASA)。$
HL
$\angle B\geq\angle A$或$\angle B+\angle C = 90^{\circ}$
$證明:如圖,過點C作CG⊥AB$
$交AB的延長線于點G$
$過點F作FH⊥DE交DE的延長線于點H$
$∵∠ABC=∠DEF$
$且∠ABC,∠DEF都是鈍角$
$∴180°?∠ABC=180°?∠DEF$
$即∠CBG=∠FEH$
$在△CBG和△FEH中$
$\begin{cases}{∠G=∠H\ } \\ { ∠CBG=∠FEH} \\{BC=EF } \end{cases}$
$∴△CBG≌△FEH(AAS),∴CG=FH$
$在Rt△ACG和Rt△DFH中$
$\begin{cases}{ AC=DF} \\ { CG=FH} \end{cases}$
$∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D$
$在△ABC和△DEF中$
$\begin{cases}{ ∠ABC=∠DEF} \\ {∠A=∠D\ } \\{AC=DF } \end{cases}$
$∴△ABC≌△DEF(AAS)$