已知:如圖,$\angle C=\angle C' = 90^{\circ},$$AC = A'C',$$AD$平分$\angle BAC,$$A'D'$平分$\angle B'A'C',$$AD = A'D'。$
求證:$\triangle ABC\cong\triangle A'B'C'。$
證明:在$Rt\triangle ACD$和$Rt\triangle A'C'D'$中,$\begin{cases}AC = A'C'\\AD = A'D'\end{cases},$$\therefore Rt\triangle ACD\cong Rt\triangle A'C'D'(HL),$$\therefore\angle CAD=\angle C'A'D'。$
$\because AD$平分$\angle BAC,$$A'D'$平分$\angle B'A'C',$$\therefore\angle CAB = 2\angle CAD,$$\angle C'A'B' = 2\angle C'A'D',$$\therefore\angle CAB=\angle C'A'B'。$
在$\triangle ABC$與$\triangle A'B'C'$中,$\begin{cases}\angle CAB=\angle C'A'B'\\AC = A'C'\\\angle C=\angle C'\end{cases},$$\therefore\triangle ABC\cong\triangle A'B'C'(ASA)。$