證明: (1)在$\triangle ABO$和$\triangle DCO$中,
$\begin{cases}\angle AOB=\angle DOC \\\angle ABO=\angle DCO \\AB = DC\end{cases}$
$\therefore \triangle ABO\cong\triangle DCO(AAS)。$
(2)$\because \triangle ABO\cong\triangle DCO,$$\therefore \angle A=\angle D,$$OA = OD,$$OB = OC,$$\therefore OB + OD=OA + OC,$即$BD = AC。$
在$\triangle ABC$和$\triangle DCB$中,
$\begin{cases}AB = DC \\BC = CB \\AC = DB\end{cases}$
$\therefore \triangle ABC\cong\triangle DCB(SSS),$$\therefore \angle ABC=\angle DCB,$$\therefore \angle ABC-\angle ABO=\angle DCB-\angle DCO,$$\therefore \angle OBC=\angle OCB。$