解:$閱讀與證明:如圖,作∠BAC的平分線AD,交BC于D$
$則∠BAD=∠CAD$
$在△ABD 和△ACD 中$
$\begin{cases}{∠BAD=∠CAD\ } \\ {∠B=∠C\ } \\{ AD=AD} \end{cases}$
$∴ △ABD≌△ACD(AAS),∴AB=AC$
操作:如圖,因?yàn)?MM'// NN',$所以$\angle MM'O = \angle NN'O。$
因?yàn)辄c(diǎn)$O$為線段$MN$的中點(diǎn),所以$OM = ON。$
在$\triangle MOM'$和$\triangle NON'$中,
$\begin{cases}\angle MM'O = \angle NN'O \\\angle MOM' = \angle NON' \\OM = ON\end{cases}$
所以$\triangle MOM'\cong\triangle NON'$(AAS),所以$MM' = NN'。$
探究:$AB = AF + CF。$
證明:如圖,連接$FE$并延長(zhǎng),交$AB$于點(diǎn)$G。$
因?yàn)?AB// DC,$所以$\angle B = \angle ECF。$
因?yàn)?E$為$BC$邊的中點(diǎn),所以$BE = CE。$
在$\triangle BEG$和$\triangle CEF$中,
$\begin{cases}\angle B = \angle ECF \\BE = CE \\\angle BEG = \angle CEF\end{cases}$
所以$\triangle BEG\cong\triangle CEF$(ASA),所以$EG = EF,$$BG = CF。$
延長(zhǎng)$AE$到$H,$使$AE = HE,$連接FH
在$\triangle AEG$和$\triangle HEF$中,
$\begin{cases}AE = HE \\\angle AEG = \angle HEF \\EG = EF\end{cases}$
所以$\triangle AEG\cong\triangle HEF$(SAS),所以$AG = HF,$$\angle BAE = \angle H。$
因?yàn)?\angle BAE = \angle EAF,$所以$\angle H = \angle EAF,$由閱讀與證明中的結(jié)論可得$AF = HF,$所以$AG = AF。$
因?yàn)?AB = AG + BG,$所以$AB = AF + CF。$