解:
(1)當(dāng)$n = 4$時(shí),有$(2,3,3);$
當(dāng)$n = 5$時(shí),有$(2,4,4),$$(3,3,4);$
當(dāng)$n = 6$時(shí),有$(2,5,5),$$(3,4,5),$$(4,4,4).$
(2)當(dāng)$n = 12$時(shí),$a + b + c = 24,$且$a + b>c,$$a\leqslant b\leqslant c,$由此得$8\leqslant c\leqslant11,$即$c = 8,9,10,11.$
故可得$(a,b,c)$共有12組,分別為$(2,11,11),$$(3,10,11),$$(4,9,11),$$(5,8,11),$$(6,7,11),$$(4,10,10),$$(5,9,10),$$(6,8,10),$$(7,7,10),$$(6,9,9),$$(7,8,9),$$(8,8,8).$