解:如圖,連接$OB$、$OC。$
因?yàn)?OA = OB,$$OC = OD,$
所以$\triangle OAB$、$\triangle OCD$均為等腰三角形,
所以$∠A = ∠ABO,$$∠OCD = ∠D。$
因?yàn)?∠A = 65°,$$∠D = 60°,$
所以$∠AOB = 180°-2∠A = 180°-2×65°=50°,$
$∠COD = 180°-2∠D = 180°-2×60°=60°。$
因?yàn)?\overset{\frown}{AD}$的度數(shù)為$150°,$
所以$∠AOD = 150°,$
所以$∠BOC = ∠AOD - ∠AOB - ∠COD = 150°-50°-60°=40°,$
所以$\overset{\frown}{BC}$的度數(shù)為$40°。$