解:對(duì)于方程$y^{2}=2+\frac{7}{2}y,$
移項(xiàng)得$y^{2}-\frac{7}{2}y = 2,$
在方程兩邊加上一次項(xiàng)系數(shù)一半的平方,
一次項(xiàng)系數(shù)為$-\frac{7}{2},$
其一半的平方為$(-\frac{7}{2}\div2)^2=\frac{49}{16},$
則$y^{2}-\frac{7}{2}y+\frac{49}{16}=2+\frac{49}{16},$
即$(y-\frac{7}{4})^{2}=\frac{81}{16},$
開(kāi)平方得$y-\frac{7}{4}=\pm\frac{9}{4},$
當(dāng)$y-\frac{7}{4}=\frac{9}{4}$時(shí),$y_{1}=4;$
當(dāng)$y-\frac{7}{4}=-\frac{9}{4}$時(shí),$y_{2}=-\frac{1}{2}。$