解:?$(1)$?∵?$ $?在?$Rt△ABC$?中,?$∠ACB=90°,$??$AC=BC,$??$AB=10\ \mathrm {cm},$?
∴?$ $?易得?$AC=BC=5 \sqrt{2}\ \mathrm {cm},$??$∠A=45°. $?
∵?$ DE//BC,$??$DF//AC,$?
∴?$ $?四邊形?$DFCE$?為平行四邊形?$ $?
∵?$ ∠ACB=90°,$?
∴?$ $?四邊形?$DFCE$?為矩形,
∴?$ ∠DEC=∠DEA=90°$?
∵?$ ∠A=45°,$?
∴?$ △ADE$?是等腰直角三角形?$.$?
由題意,得?$AD=2\ \mathrm {t}\ \mathrm {cm} ,$?
則易得?$AE=DE= \sqrt{2}\ \mathrm {t}\ \mathrm {cm} ,$??$EC=(5 \sqrt{2}-\sqrt{2}\ \mathrm {t})\ \mathrm {cm}. $?
∴?$ \sqrt{2}\ \mathrm {t}×(5 \sqrt{2}-\sqrt{2}t)=12.$?
整理,得?$t2-5t+6=0,$?
解得?$t_{1}=2,$??$t_{2}=3. $?
∴?$ $?當(dāng)?$t $?的值為?$2$?或?$3$?時(shí),四邊形?$DFCE$?的面積為?$12\ \mathrm {cm}2 $?
?$(2)①$?存在?$ $?∵點(diǎn)?$B$?在?$OD$?上,
∴?$DB=DE.$?
當(dāng)點(diǎn)?$D$?在點(diǎn)?$B$?的左邊時(shí),由?$\sqrt {2}t=10-2t,$?
解得?$t=10-5\sqrt {2};$?
當(dāng)點(diǎn)?$D$?在點(diǎn)?$B$?的右邊時(shí),由?$\sqrt {2}t=2t-10,$?
解得?$t=10+5\sqrt {2}.$?
綜上所述,當(dāng)?$t $?的值為?$10-5+\sqrt {2} $?或?$10+5\sqrt {2}$?時(shí),?$⊙D$?正好經(jīng)過點(diǎn)?$B.$?