亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第178頁(yè)

第178頁(yè)

信息發(fā)布者:
①②

證明:?$(1)$?∵?$DF// AE,$?
∴?$∠A=∠DFB,$?
又∵?$∠FDE=∠A,$?
∴?$∠FDE=∠DFB,$?
∴?$DE// BA。$?
?$(2)$?∵?$∠FDE=∠A,$??$∠A=∠BDF=2∠EDC,$
??$∠FDE+∠BDF+ ∠EDC=180°,$?
∴?$∠A+∠A+\frac {1}{2}∠A=180°,$?
∴?$∠A=72$
?∵?$DF∥AE,$
?∴?$∠AFD=180°?∠A=108°.$?
解:?$ (1)$?
?$ \begin {aligned}2^2\oplus 2^3&=2^{2×3}+2^{2 + 3}\\&=2^6+2^5\\&=64 + 32\\&=96\end {aligned}$?
?$ (2)2^{p}=3,$??$2^{q}=5,$??$3^{q}=6,$?則
?$ \begin {aligned}2^{p}\oplus 2^{q}&=2^{pq}+2^{p + q}\\&=(2^{p})^{q}+2^{p}×2^{q}\\&=3^{q}+3×5\\&=6 + 15\\&=21\end {aligned}$?
解:?$ (1)$?設(shè)正方形紙片?$A,$??$B$?的邊長(zhǎng)分別為?$a,$??$b,$
?由題意得?$\begin {cases}2a = 3b\\a + b = 10\end {cases},$?解得:?$\begin {cases}{a=6}\\{b=4}\end {cases}$?
答:正方形紙片?$A,$??$B$?的邊長(zhǎng)分別為?$6,$??$4。$?
?$ (2)$?設(shè)正方形?$C,$??$D$?的邊長(zhǎng)分別為?$c,$??$d,$?則
由圖?$②$?得?$(c - d)^2=4,$?即?$c^2-2cd + d^2=4,$?
由圖?$③$?得?$(c + d)^2-c^2-d^2=48,$?即?$2cd = 48,$?
所以?$c^2+d^2-48 = 4,$?
所以?$c^2+d^2=52,$?即正方形?$C,$??$D$?的面積之和為?$52。$?
解:?$ (1)$?∵?$(a + b)^2=a^2+2ab + b^2,$?
∴?$(a + b)^2-a^2-b^2=2ab,$?
∵?$a>0,$??$b>0,$?
∴?$2ab>0,$?即?$(a + b)^2-a^2-b^2=2ab>0,$?
∴當(dāng)?$a>0,$??$b>0$?時(shí),?$(a + b)^2>a^2+b^2。$?
?$ (2)$?當(dāng)?$a>0,$??$b>0$?時(shí),如圖,

邊長(zhǎng)為?$(a + b)$?的正方形面積大于邊長(zhǎng)分別為?$a,$
??$b$?的正方形面積之和,
∴當(dāng)?$a>0,$??$b>0$?時(shí),?$(a + b)^2>a^2+b^2。$?