解:?$(2)$?設(shè)?$∠BAG = x。$?
∵?$AE\perp AB,$?
∴?$∠EAG = 90°-∠BAG = 90°-x。$?
∵?$AG $?平分?$∠EAM,$?
∴?$∠EAM = 2∠EAG = 180°-2x,$?
∴?$∠BAM = 90°-∠EAM = 2x - 90°。$?
∵?$MN// PQ,$??$AB// CD,$?
∴?$∠ABQ=∠BAM,$??$∠CDQ=∠ABQ,$?
∴?$∠CDQ=∠BAM = 2x - 90°。$?
∵?$CD\perp DF,$?
∴?$∠FDQ = 90°+∠CDQ = 2x,$?
∴?$2∠BAG=∠FDQ。$?
?$ (3)∠HBD+∠AHB+∠BAH = 240°$?或
?$∠AHB+∠BAH-∠HBD = 120°。$?
理由如下:
如圖①,當(dāng)點?$H$?在點?$K$?上方時,過點?$H$?
作?$HT// MN,$?則?$HT// MN// PQ,$?

∴?$∠1=∠HBD,$??$∠MAB=∠ABD = 60°,$?
?$∠AHT+∠HAM = 180°,$?
∴?$∠HBD+∠AHB+∠HAM = 180°,$?
∴?$∠HBD+∠AHB+∠HAM+∠MAB = 240°,$?
即?$∠HBD+∠AHB+∠BAH = 240°;$?
如圖②,當(dāng)點?$H$?在點?$C,$??$K$?之間時,過點?$H$?作
?$HT// MN,$?則?$HT// MN// PQ,$?

∴?$∠HBD=∠THB,$??$∠THA=∠HAC,$?
?$∠BAC = 180°-∠ABD = 120°,$?
∴?$∠HBD=∠THA+∠AHB=∠AHB+∠HAC$?
∴?$∠HBD=∠AHB+∠BAH-∠BAC,$?
∴?$∠AHB+∠BAH-∠HBD=∠BAC,$?
即?$∠AHB+∠BAH-∠HBD = 120°;$?
如圖③,當(dāng)點?$H$?在點?$C,$??$D$?之間時,過點?$H$?作
?$HT// MN,$?則?$HT// MN// PQ,$?

∴?$∠HAN=∠AHT,$??$∠BHT=∠HBD,$?
?$∠BAC = 180°-∠ABD = 120°,$?
∴?$∠AHT = 120°-∠BAH,$?
∴?$∠AHB=∠AHT+∠BHT $?
?$= 120°-∠BAH+∠HBD,$?
∴?$∠AHB+∠BAH-∠HBD = 120°。$?
當(dāng)點?$H$?在點?$K$?或點?$C$?處時,經(jīng)檢驗,符合
?$∠AHB+∠BAH-∠HBD = 120°。$?
綜上所述,滿足條件的關(guān)系是
?$∠HBD+∠AHB+∠BAH = 240°$?或
?$∠AHB+∠BAH-∠HBD = 120°。$?