亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第144頁

第144頁

信息發(fā)布者:
7
8
解:?$(2)$?規(guī)律:?$n(n + 3)+2=(n + 1)(n + 2)。$?
證明:∵?$n(n + 3)+2=n^2+3n + 2,$?
?$(n + 1)(n + 2)=n^2+2n+n + 2=n^2+3n + 2,$?
∴?$n(n + 3)+2=(n + 1)(n + 2)。$?
?$ (3)\frac {(2×5 + 2)(4×7 + 2)(6×9 + 2)…(2022×2025 + 2)}{(1×4 + 2)(3×6 + 2)(5×8 + 2)…(2021×2024 + 2)}$?
?$ =\frac {3×4×5×6×7×8×…×2023×2024}{2×3×4×5×6×7×…×2022×2023}$?
?$=\frac {2024}{2}$?
?$=1012$?
48°
解:?$(2)$?設(shè)?$∠BAG = x。$?
 ∵?$AE\perp AB,$?
∴?$∠EAG = 90°-∠BAG = 90°-x。$?
 ∵?$AG $?平分?$∠EAM,$?
∴?$∠EAM = 2∠EAG = 180°-2x,$?
∴?$∠BAM = 90°-∠EAM = 2x - 90°。$?
∵?$MN// PQ,$??$AB// CD,$?
∴?$∠ABQ=∠BAM,$??$∠CDQ=∠ABQ,$?
∴?$∠CDQ=∠BAM = 2x - 90°。$?
 ∵?$CD\perp DF,$?
∴?$∠FDQ = 90°+∠CDQ = 2x,$?
∴?$2∠BAG=∠FDQ。$?
?$ (3)∠HBD+∠AHB+∠BAH = 240°$?或
?$∠AHB+∠BAH-∠HBD = 120°。$?
理由如下: 如圖①,當(dāng)點?$H$?在點?$K$?上方時,過點?$H$?
作?$HT// MN,$?則?$HT// MN// PQ,$?
∴?$∠1=∠HBD,$??$∠MAB=∠ABD = 60°,$?
?$∠AHT+∠HAM = 180°,$?
∴?$∠HBD+∠AHB+∠HAM = 180°,$?
∴?$∠HBD+∠AHB+∠HAM+∠MAB = 240°,$?
即?$∠HBD+∠AHB+∠BAH = 240°;$?
 如圖②,當(dāng)點?$H$?在點?$C,$??$K$?之間時,過點?$H$?作
?$HT// MN,$?則?$HT// MN// PQ,$?
∴?$∠HBD=∠THB,$??$∠THA=∠HAC,$?
?$∠BAC = 180°-∠ABD = 120°,$?
∴?$∠HBD=∠THA+∠AHB=∠AHB+∠HAC$?
∴?$∠HBD=∠AHB+∠BAH-∠BAC,$?
∴?$∠AHB+∠BAH-∠HBD=∠BAC,$?
即?$∠AHB+∠BAH-∠HBD = 120°;$?
 如圖③,當(dāng)點?$H$?在點?$C,$??$D$?之間時,過點?$H$?作
?$HT// MN,$?則?$HT// MN// PQ,$?
∴?$∠HAN=∠AHT,$??$∠BHT=∠HBD,$?
?$∠BAC = 180°-∠ABD = 120°,$?
∴?$∠AHT = 120°-∠BAH,$?
∴?$∠AHB=∠AHT+∠BHT $?
?$= 120°-∠BAH+∠HBD,$?
∴?$∠AHB+∠BAH-∠HBD = 120°。$?
當(dāng)點?$H$?在點?$K$?或點?$C$?處時,經(jīng)檢驗,符合
?$∠AHB+∠BAH-∠HBD = 120°。$?
綜上所述,滿足條件的關(guān)系是
?$∠HBD+∠AHB+∠BAH = 240°$?或
?$∠AHB+∠BAH-∠HBD = 120°。$?