亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第75頁

第75頁

信息發(fā)布者:
證明:?$(1)$?∵?$C$?是?$\widehat {BD}$?的中點,
∴?$\widehat {CD}=\widehat {BC}.$?
∵?$AB$?是?$⊙O$?的直徑,且?$CF⊥AB,$?
∴?$\widehat {BC}=\widehat {BF},$?
∴?$\widehat {CD}=\widehat {BF},$?
∴?$CD=BF.$?
∵在?$△BFG $?和?$△CDG $?中,?$∠F=∠CDG,$??$∠FGB=∠DGC,$??$BF=CD,$?
∴?$△BFG≌△CDG.$?
?$(2)$?如圖,過?$C$?作?$CH⊥AD$?于?$H,$?連接?$AC、$??$BC,$?
∵?$\widehat {CD}=\widehat {BC},$?
∴?$∠HAC=∠BAC.$?
∵?$CE⊥AB,$?
∴?$CH=CE.$?
∵?$AC=AC,$?
∴?$Rt△AHC≌Rt△AEC,$?
∴?$AE=AH.$?
∵?$CH=CE,$??$CD=CB,$?
∴?$Rt△CDH≌Rt△CBE,$?
∴?$DH=BE=2,$?
∴?$AE=AH=2+2=4,$?
∴?$AB=4+2=6.$?
∵?$AB$?是?$⊙O$?的直徑,
∴?$∠ACB=90°,$?
∴?$∠ACB=∠BEC=90°.$?
∵?$∠EBC=∠ABC,$?
∴?$△BEC∽△BCA,$?
∴?$\frac {BC}{AB}=\frac {BE}{BC},$?
∴?$BC^2=AB·BE=6×2=12,$?
∴?$BF=BC=2\sqrt {3}.$?

B
C
$135^{\circ}$
解?$: (1)$?∵?$∠BAE=∠CAD,$?
∴?$∠BAE+∠BAD=∠CAD+∠BAD,$?
即?$∠EAD=∠BAC。$?
又∵?$∠ADE=∠ACB,$??$AD = AC,$?
∴?$\triangle ADE\cong \triangle ACB,$?
∴?$AE = AB。$?
∵?$AB = 8,$?
∴?$AE = 8 $?
?$ (2)$?如圖,連接?$BO$?并延長交?$\odot O$?于點?$F,$?連接?$AF。$?
∵?$BF $?是?$\odot O$?的直徑,
∴?$∠BAF = 90°,$?
∴在?$Rt\triangle BAF{中},$??$∠AFB+∠ABF = 90°。$?
∵?$\overset {\frown }{AB}=\overset {\frown }{AB},$?
∴?$∠AFB=∠ACB,$?
∴?$∠ACB+∠ABF = 90°。$?
∵?$AD = AC,$?
∴?$∠ACB=∠ADC,$?
∴在?$\triangle ADC$?中,?$2∠ACB+∠CAD = 180°。$?
由?$(1)$?知,?$AE = AB,$?
∴?$∠AEB=∠ABE,$?
∴在?$\triangle ABE$?中,?$2∠ABE+∠BAE = 180°。$?
∵?$∠BAE = ∠CAD,$?
∴?$∠ACB = ∠ABE,$?
∴?$∠ABE+∠ABF = 90°,$?即?$∠OBE = 90°,$?
∴?$OB\perp BE。$?
∵?$OB$?為?$\odot O$?的半徑,
∴?$EB$?是?$\odot O$?的切線