解?$: (1)$?∵?$∠BAE=∠CAD,$?
∴?$∠BAE+∠BAD=∠CAD+∠BAD,$?
即?$∠EAD=∠BAC。$?
又∵?$∠ADE=∠ACB,$??$AD = AC,$?
∴?$\triangle ADE\cong \triangle ACB,$?
∴?$AE = AB。$?
∵?$AB = 8,$?
∴?$AE = 8 $?
?$ (2)$?如圖,連接?$BO$?并延長交?$\odot O$?于點?$F,$?連接?$AF。$?
∵?$BF $?是?$\odot O$?的直徑,
∴?$∠BAF = 90°,$?
∴在?$Rt\triangle BAF{中},$??$∠AFB+∠ABF = 90°。$?
∵?$\overset {\frown }{AB}=\overset {\frown }{AB},$?
∴?$∠AFB=∠ACB,$?
∴?$∠ACB+∠ABF = 90°。$?
∵?$AD = AC,$?
∴?$∠ACB=∠ADC,$?
∴在?$\triangle ADC$?中,?$2∠ACB+∠CAD = 180°。$?
由?$(1)$?知,?$AE = AB,$?
∴?$∠AEB=∠ABE,$?
∴在?$\triangle ABE$?中,?$2∠ABE+∠BAE = 180°。$?
∵?$∠BAE = ∠CAD,$?
∴?$∠ACB = ∠ABE,$?
∴?$∠ABE+∠ABF = 90°,$?即?$∠OBE = 90°,$?
∴?$OB\perp BE。$?
∵?$OB$?為?$\odot O$?的半徑,
∴?$EB$?是?$\odot O$?的切線