亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網 第57頁

第57頁

信息發(fā)布者:
$105^{\circ}$
$64^{\circ}$
$(4,3 - \sqrt{5})$
證明:?$(1)$?∵?$PA$?與?$\odot O$?相切于點?$A,$?
∴?$PA\perp OA.$?
∵?$PO$?平分?$∠APD,$??$OB\perp PD,$?
∴?$OB = OA,$?
∴?$PB$?是?$\odot O$?的切線?$.$?
?$(2)$?根據題意,得?$OA = OB = 4$?
.∵?$OC = 5,$?
∴?$AC = OA + OC = 4 + 5 = 9.$?
∵?$PA\perp OA,$??$OB\perp PD,$?
∴?$∠PAO=∠PBO=∠OBC = 90°,$?
∴在?$Rt\triangle OBC$?中,?$BC=\sqrt {OC^2-OB^2} = 3.$?
在?$Rt\triangle PAO$?和?$Rt\triangle PBO$?中,
?$OA = OB,$?
?$OP = OP,$?
∴?$Rt\triangle PAO\cong Rt\triangle PBO,$?
∴?$PA = PB.$?
∵在?$Rt\triangle PAC$?中,?$PA^2+AC^2=PC^2,$?
∴?$PA^2+9^2=(PA + 3)^2,$?
?$ \begin {aligned}PA^2+81&=PA^2+6PA + 9\\6PA&=72\\PA&=12\end {aligned}$?
∴?$PA$?的長是?$12.$?
解:?$(1)$?∵?$PC$?與?$\odot O$?相切于點?$C,$?
∴?$OC\perp PC,$?
∴?$∠OCB+∠BCP = 90°.$?
∵?$OB = OC,$?
∴?$∠OCB = ∠OBC.$?
∵?$∠ABC = 2∠BCP,$?
∴?$∠OCB = 2∠BCP,$?
∴?$2∠BCP+∠BCP = 90°,$?
解得?$∠BCP = 30°,$?
∴?$∠OCB = 2∠BCP = 60°.$?
?$(2)$?連接?$DE.$?
∵?$CD$?是?$\odot O$?的直徑,
∴?$∠DEC = 90°.$?
∵?$E$?是?$\overset {\frown }{BD}$?的中點,
∴?$\overset {\frown }{DE}=\overset {\frown }{BE},$?
∴?$∠DCE=∠FDE=∠ECB=\frac {1}{2}∠DCB = 30°.$?
∵在?$Rt\triangle DEF_{中},$??$EF = 3,$??$∠FDE = 30°,$?
∴易得?$DF = 2EF = 6,$?
∴?$DE=\sqrt {DF^2-EF^2} = 3\sqrt {3}.$?
又∵在?$Rt\triangle DEC$?中,?$∠DCE = 30°,$?
∴易得?$CD = 2DE = 6\sqrt {3},$?
即?$\odot O$?的直徑為?$6\sqrt {3}.$?