證明:?$(1)$?∵?$PA$?與?$\odot O$?相切于點?$A,$?
∴?$PA\perp OA.$?
∵?$PO$?平分?$∠APD,$??$OB\perp PD,$?
∴?$OB = OA,$?
∴?$PB$?是?$\odot O$?的切線?$.$?
?$(2)$?根據題意,得?$OA = OB = 4$?
.∵?$OC = 5,$?
∴?$AC = OA + OC = 4 + 5 = 9.$?
∵?$PA\perp OA,$??$OB\perp PD,$?
∴?$∠PAO=∠PBO=∠OBC = 90°,$?
∴在?$Rt\triangle OBC$?中,?$BC=\sqrt {OC^2-OB^2} = 3.$?
在?$Rt\triangle PAO$?和?$Rt\triangle PBO$?中,
?$OA = OB,$?
?$OP = OP,$?
∴?$Rt\triangle PAO\cong Rt\triangle PBO,$?
∴?$PA = PB.$?
∵在?$Rt\triangle PAC$?中,?$PA^2+AC^2=PC^2,$?
∴?$PA^2+9^2=(PA + 3)^2,$?
?$ \begin {aligned}PA^2+81&=PA^2+6PA + 9\\6PA&=72\\PA&=12\end {aligned}$?
∴?$PA$?的長是?$12.$?