證明:?$(1)$?如圖,連接?$OC。$?
∵?$ C$?是?$\overset {\frown }{ACB}$?的中點,
∴?$ \overset {\frown }{AC}=\overset {\frown }{BC},$?
根據(jù)在同圓或等圓中,相等的弧所對的圓心角相等,可得?$∠COD = ∠COE。$?
∵?$ OA = OB,$??$AD = BE,$?
∴?$ OA - AD = OB - BE,$?即?$OD = OE。$?
又∵?$ OC = OC,$?
?$ $?在?$△COD$?和?$△COE$?中,
?$ \begin {cases}OD = OE\\∠COD=∠COE\\OC = OC\end {cases}$?
?$ $?根據(jù)?$SAS($?邊角邊?$)$?判定定理,可得?$△COD≌△COE,$?
∴?$ CD = CE。$?
?$ (2)$?證明:
如圖,連接?$OM、$??$ON。$?
∵?$ △COD≌△COE,$?
∴?$ ∠CDO = ∠CEO,$??$∠OCD = ∠OCE。$?
∵?$ OC = OM = ON,$?
∴?$ ∠OCM = ∠M,$??$∠OCN = ∠N,$?
∴?$ ∠M = ∠N。$?
∵?$ ∠CDO = ∠M + ∠MOD,$??$∠CEO = ∠N + ∠NOE,$?
∴?$ ∠MOD = ∠NOE,$?
根據(jù)在同圓或等圓中,相等的圓心角所對的弧相等,可得?$\overset {\frown }{AM}=\overset {\frown }{BN}。$?