亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第39頁

第39頁

信息發(fā)布者:
3
30°
3

證明:?$(1)$?如圖,連接?$OC。$?
∵?$ C$?是?$\overset {\frown }{ACB}$?的中點,
∴?$ \overset {\frown }{AC}=\overset {\frown }{BC},$?
根據(jù)在同圓或等圓中,相等的弧所對的圓心角相等,可得?$∠COD = ∠COE。$?
∵?$ OA = OB,$??$AD = BE,$?
∴?$ OA - AD = OB - BE,$?即?$OD = OE。$?
又∵?$ OC = OC,$?
?$ $?在?$△COD$?和?$△COE$?中,
?$ \begin {cases}OD = OE\\∠COD=∠COE\\OC = OC\end {cases}$?
?$ $?根據(jù)?$SAS($?邊角邊?$)$?判定定理,可得?$△COD≌△COE,$?
∴?$ CD = CE。$?
?$ (2)$?證明:
如圖,連接?$OM、$??$ON。$?
∵?$ △COD≌△COE,$?
∴?$ ∠CDO = ∠CEO,$??$∠OCD = ∠OCE。$?
∵?$ OC = OM = ON,$?
∴?$ ∠OCM = ∠M,$??$∠OCN = ∠N,$?
∴?$ ∠M = ∠N。$?
∵?$ ∠CDO = ∠M + ∠MOD,$??$∠CEO = ∠N + ∠NOE,$?
∴?$ ∠MOD = ∠NOE,$?
根據(jù)在同圓或等圓中,相等的圓心角所對的弧相等,可得?$\overset {\frown }{AM}=\overset {\frown }{BN}。$?

解?$:(1)BE = CE,$?理由:
∵?$ ∠BOE = ∠AOD,$?
根據(jù)在同圓或等圓中,相等的圓心角所對的弧相等,可得?$\overset {\frown }{BE}=\overset {\frown }{AD}。$?
又∵?$ \overset {\frown }{AD}=\overset {\frown }{CE},$?
∴?$ \overset {\frown }{BE}=\overset {\frown }{CE},$?
根據(jù)在同圓或等圓中,相等的弧所對的弦相等,可得?$BE = CE。$?
?$(2)$?四邊形?$OACE$?是菱形?$,$?理由:
如圖,連接?$OC。$?
∵?$ BE = CE,$?
∴?$ ∠BOE = ∠COE = 60°。$?
又∵?$ OE = OC,$?
∴?$ △OCE$?為等邊三角形,
∴?$ CE = OE。$?
∵?$ ∠BOE + ∠COE + ∠AOC = 180°,$?
∴?$ ∠AOC = 180° - ∠BOE - ∠COE = 180° - 60° - 60° = 60°,$?
∴?$ ∠AOC = ∠COE = 60°,$?
根據(jù)在同圓或等圓中,相等的圓心角所對的弦相等,可得?$AC = CE。$?
又∵?$ OE = CE,$??$OA = OE,$?
∴?$ OE = CE = AC = OA,$?
根據(jù)菱形的判定定理:四條邊相等的四邊形是菱形,可得四邊形?$OACE$?是菱形。