解?$:(2)①$?當(dāng)?$7$?為底邊長(zhǎng)時(shí),方程?$x^2-2(m + 1)x +\mathrm {m^2}+5 = 0$?有兩個(gè)相等的實(shí)數(shù)根,
?$ $?所以?$b^2-4ac=[-2(m + 1)]^2-4(\mathrm {m^2}+5)=4(\mathrm {m^2}+2m + 1)-4\ \mathrm {m^2}-20=4\ \mathrm {m^2}+8m + 4 - 4\ \mathrm {m^2}-20=8m - 16 = 0,$?
?$ $?解得?$m = 2,$?
?$ $?方程變?yōu)?$x^2-6x + 9 = 0,$?
?$ $?分解因式得?$(x - 3)^2=0,$?解得?$x_{1}=x_{2}=3。$?
?$ $?因?yàn)?$3 + 3<7,$?不能構(gòu)成三角形,所以?$m = 2$?不符合題意。
?$ ②$?當(dāng)?$7$?為腰長(zhǎng)時(shí),將?$x = 7$?代入方程,得?$49-14(m + 1)+\mathrm {m^2}+5 = 0,$?
?$ 49-14m - 14+\mathrm {m^2}+5 = 0,$?
?$\mathrm {m^2}-14m + 40 = 0,$?
?$ $?分解因式得?$(m - 4)(m - 10)=0,$?
?$ $?解得?$m_{1}=10,$??$m_{2}=4。$?
?$ $?當(dāng)?$m = 10$?時(shí),方程變?yōu)?$x^2-22x + 105 = 0,$?
?$ $?分解因式得?$(x - 7)(x - 15)=0,$?解得?$x_{1}=7,$??$x_{2}=15。$?
?$ $?因?yàn)?$7 + 7<15,$?不能構(gòu)成三角形,所以?$m = 10$?不符合題意。
?$ $?當(dāng)?$m = 4$?時(shí),方程變?yōu)?$x^2-10x + 21 = 0,$?
?$ $?分解因式得?$(x - 3)(x - 7)=0,$?解得?$x_{1}=7,$??$x_{2}=3,$?
?$ $?此時(shí)三角形的周長(zhǎng)為?$7 + 7 + 3 = 17。$?
綜上所述,這個(gè)三角形的周長(zhǎng)為?$17。$?