解:?$(1)$?由題意,對(duì)于方程?$x^2-6x + 2m - 1 = 0,$?
因?yàn)?$x_{1} = 1,$?根據(jù)根與系數(shù)的關(guān)系?$x_{1}+x_{2}=6,$??$x_{1}·x_{2}=2m - 1。$?
?$ $?則?$1 + x_{2} = 6,$?解得?$x_{2} = 5;$?
?$ 1×x_{2}=2m - 1,$?即?$5 = 2m - 1,$?解得?$m = 3。$?
?$ (2) $?解:存在。
根據(jù)題意,方程?$x^2-6x + 2m - 1 = 0$?中,?$?=(-6)^2-4(2m - 1)\geqslant 0,$?
?$ 36-8m + 4\geqslant 0,$?
?$ 40-8m\geqslant 0,$?
?$ $?解得?$m\leqslant 5。$?
?$ $?假設(shè)存在實(shí)數(shù)?$m,$?滿足?$(x_{1} - 1)(x_{2} - 1)=\frac {6}{m - 5},$?
?$ $?因?yàn)?$x_{1} + x_{2} = 6,$??$x_{1}x_{2} = 2m - 1,$?
?$ $?則?$x_{1}x_{2}-(x_{1} + x_{2})+1=\frac {6}{m - 5},$?
?$ $?即?$2m - 1-6 + 1=\frac {6}{m - 5},$?
?$ 2m-6=\frac {6}{m - 5},$?
?$ (2m - 6)(m - 5)=6,$?
?$ 2\ \mathrm {m^2}-10m-6m + 30 = 6,$?
?$ 2\ \mathrm {m^2}-16m + 24 = 0,$?
?$\mathrm {m^2}-8m + 12 = 0,$?
?$ (m - 2)(m - 6)=0,$?
?$ $?解得?$m_{1} = 2,$??$m_{2} = 6。$?
?$ $?因?yàn)?$m\leqslant 5$?且?$m - 5\neq 0,$?所以?$m = 2。$?
經(jīng)檢驗(yàn),?$m = 2$?是原分式方程的解,且符合題意。
所以假設(shè)成立,即存在實(shí)數(shù)?$m = 2,$?滿足?$(x_{1} - 1)(x_{2} - 1)=\frac {6}{m - 5}。$?