解?$:(1)$?由方程?$x^2-(2k + 3)x + k^2+3k + 2 = 0,$?得?$b^2-4ac=[-(2k + 3)]^2-4(k^2+3k + 2)=1>0,$?
所以無論?$k$?取何值,方程總有兩個不相等的實數(shù)根。
利用求根公式解方程,得?$x_{1}=k + 1,$??$x_{2}=k + 2。$?
?$ $?設(shè)?$AB = k + 1,$??$AC = k + 2。$?因為第三邊?$BC$?的長為?$5,$?
?$ $?所以當(dāng)?$\triangle ABC$?是直角三角形時,分兩種情況討論:
?$ ①$?當(dāng)?$BC$?是斜邊時,有?$AB^2+AC^2=BC^2,$?即?$(k + 1)^2+(k + 2)^2=5^2,$?
?$ $?展開得?$k^2+2k + 1 + k^2+4k + 4 = 25,$?
?$ $?整理得?$2k^2+6k - 20 = 0,$?即?$k^2+3k - 10 = 0,$?
?$ $?因式分解得?$(k - 2)(k + 5)=0,$?
?$ $?解得?$k_{1}=2,$??$k_{2}=-5($?不合題意,舍去);
?$ ②$?當(dāng)?$AC$?是斜邊時,有?$AB^2+BC^2=AC^2,$?即?$(k + 1)^2+5^2=(k + 2)^2,$?
?$ $?展開得?$k^2+2k + 1 + 25 = k^2+4k + 4,$?
?$ $?移項得?$2k = 22,$?
?$ $?解得?$k = 11。$?
?$ $?所以當(dāng)?$k = 2$?或?$11$?時,?$\triangle ABC$?是直角三角形。
?$(2)$?由?$(1),$?不妨設(shè)?$AB = k + 1,$??$AC = k + 2。$?因為?$BC = 5,$?
?$ $?所以當(dāng)?$\triangle ABC$?是等腰三角形時,分兩種情況討論:
?$ ①$?當(dāng)?$AC = BC = 5$?時,?$k + 2 = 5,$?所以?$k = 3,$?則?$AB = 4,$?此時?$\triangle ABC$?的周長為?$4 + 5 + 5 = 14;$?
?$ ②$?當(dāng)?$AB = BC = 5$?時,?$k + 1 = 5,$?所以?$k = 4,$?則?$AC = 6,$?此時?$\triangle ABC$?的周長為?$5 + 5 + 6 = 16。$?
綜上所述,當(dāng)?$k = 3$?或?$4$?時,?$\triangle ABC$?是等腰三角形,?$\triangle ABC$?的周長分別是?$14$?或?$16。$?