解:?$(1) $?由題意得,矩陣?$\begin {pmatrix}4&1&5\\3&-2&3\end {pmatrix}$?對應(yīng)的方
程組為?$\begin {cases}4x + y = 5\\3x - 2y = 3\end {cases},$?解得?$\begin {cases}x=\dfrac {13}{11}\\y =\dfrac {3}{11}\end {cases},$?
所以矩陣?$\begin {pmatrix}4&1&5\\3&-2&3\end {pmatrix}$?對應(yīng)的方程組的解
為?$\begin {cases}x=\dfrac {13}{11}\\y =\dfrac {3}{11}\end {cases}。$?
?$(2) $?根據(jù)題意得?$\begin {cases}x + y + tz = 3①\\2x - y + mz = 2②\end {cases},$
??$①×1+②$?得?$4x + y+(2t + m)z = 8。$?
因?yàn)?$4x + y - z$?為定值,
所以?$2t + m = - 1。$?