亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第33頁

第33頁

信息發(fā)布者:
$a^{2}-b^{2}=(a + b)(a - b)$
(更多請(qǐng)點(diǎn)擊查看作業(yè)
精靈詳解)
解:?$(3)100^2\pi -99^2\pi +… + 4^2\pi -3^2\pi +2^2\pi -1^2\pi$?
?$=\pi (100^2-99^2+… + 4^2-3^2+2^2-1^2)$?
?$=\pi (100 + 99+… + 4 + 3 + 2 + 1)$?
?$=\pi ×\frac {100×(100 + 1)}{2}$?
?$=5050\pi (\mathrm {cm}^2)$?
故所有陰影的面積和為?$5050\pi\mathrm {cm}^2。$?
6
1
解:原式?$=(3 - 1)×(3 + 1)×(3^2+1)×(3^4+1)×$?
?                    $(3^8+1)+1$?
?               $ =(3^2-1)×(3^2+1)×(3^4+1)×(3^8+1)+1$?
?               $ =(3^4-1)×(3^4+1)×(3^8+1)+1$?
?               $ =(3^8-1)×(3^8+1)+1$?
?               $ =3^{16}$ ?
解:
$\begin {aligned}&(1-\frac {1}{2^2})(1-\frac {1}{3^2})(1-\frac {1}{4^2})(1-\frac {1}{5^2})…(1-\frac {1}{2023^2})(1-\frac {1}{2024^2})\\=&(1+\frac {1}{2})(1-\frac {1}{2})(1+\frac {1}{3})(1-\frac {1}{3})(1+\frac {1}{4})(1-\frac {1}{4})…(1+\frac {1}{2023})(1-\frac {1}{2023})(1+\frac {1}{2024})(1-\frac {1}{2024})\\=&(1+\frac {1}{2})(1+\frac {1}{3})(1+\frac {1}{4})…(1+\frac {1}{2023})(1+\frac {1}{2024})(1-\frac {1}{2})(1-\frac {1}{3})(1-\frac {1}{4})…(1-\frac {1}{2023})(1-\frac {1}{2024})\\=&\frac {3}{2}×\frac {4}{3}×\frac {5}{4}×…×\frac {2024}{2023}×\frac {2025}{2024}×\frac {1}{2}×\frac {2}{3}×\frac {3}{4}×…×\frac {2022}{2023}×\frac {2023}{2024}\\=&\frac {2025}{2}×\frac {1}{2024}\\=&\frac {2025}{4048}\end {aligned}$