$ 解:過點A作AC⊥OB于C,過點O'作O'D⊥A'B于D$
$∵A(,2\sqrt{5}),∴OC=2,AC=\sqrt{5}$
$由勾股定理得:OA=\sqrt{OC2+AC2}=3$
$∵△AOB是等腰三角形,OB是底邊$
$∴OB=2OC=2×2=4$
$由旋轉的性質,得BO'=OB=4,∠A'BO'=∠ABO$
$∴O'D=4×\frac {\sqrt{5}}{3}=\frac {4\sqrt{5}}{3}$
$BD=4×\frac {2}{3}=\frac {8}{3}$
$∴OD=OB+BD=\frac {20}{3}$
$∴O'的坐標是(\frac {20}{3},\frac {4\sqrt{5}}{3})$