解:???$(1)②$???存在,過(guò)點(diǎn)???$D$???作???$DG⊥AC$???于點(diǎn)???$G,$
???作???$DH⊥BC$???于點(diǎn)???$H$???
∵點(diǎn)???$D$???到???$AC、$??????$BC$???的距離分別為???$4、$??????$3$???
∴???$DG=4,$??????$DH=3$???
由題意得,???$BP=2t,$??????$CQ=t$???
∵???$BC=8$???
∴???$CP=8-2t$???
∴???$S_{△CDP}=\frac 1 2CP·DH=\frac 1 2(8-2t)×3=12-3t,$???
???$S_{△CDQ}=\frac 1 2CQ·DG=\frac 1 2t×4=2t$???
令???$12-3t=2t,$???得
???$t=2.4$???
∴當(dāng)???$t=2.4$???時(shí),???$△CDP$???與???$△CDQ$???面積相等
???$(2)$???結(jié)論:???$∠CFB=2∠ACD+∠ABE$???
證明:過(guò)點(diǎn)???$D$???作???$DM⊥BC$???于點(diǎn)???$M,$???
∵???$DM⊥BC$???
∴???$∠DMC=∠DMB=90°$???
∵???$∠DBC=∠DCB$???
∴???$∠CDM=∠BDM,$???即???$∠CDB=2∠CDM$???
∵???$∠ACB=∠DMB=90°$???
∴???$AC//DM$???
∴???$∠ACD=∠CDM$???
∴???$∠CDB=2∠ACD$???
∴???$∠CFB=∠CDB+∠ABE=2∠ACD+∠ABE$???