證明:?$(1)$?設(shè)這個(gè)四位數(shù)是?$\overline {abcd},$?則?$\overline {abcd}=1000a + 100b + 10c + d$?
?$=(999a + 99b + 9c)+(a + b + c + d)$?
?$=3(333a + 33b + 3c)+(a + b + c + d)$?
?$ $?若?$a + b + c + d$?可以被?$3$?整除,∵?$3(333a + 33b + 3c)$?能被?$3$?整除
∴這個(gè)數(shù)?$\overline {abcd}$?可以被?$3$?整除
?$ (2) $?設(shè)?$y_{1} = x_{1}^2,$??$y_{2} = x_{2}^2,$?則?$y_{1} - y_{2} = x_{1}^2 - x_{2}^2=(x_{1} + x_{2})(x_{1} - x_{2})$?
?$ $?當(dāng)?$x_{1}>x_{2}>0$?時(shí),?$x_{1} + x_{2}>0,$??$x_{1} - x_{2}>0$?
∴?$(x_{1} + x_{2})(x_{1} - x_{2})>0,$?即?$y_{1} - y_{2}>0,$?∴?$y_{1}>y_{2}$?