亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第93頁

第93頁

信息發(fā)布者:
證明:∵?$EF⊥BC$?
∴?$∠BFE = 90°$?
∵?$∠CG D = ∠CAB$?
∴?$AB// DG$?
∴?$∠1 = ∠DAB$?
又∵?$∠1 = ∠2$?
∴?$∠DAB = ∠2$?
∴?$AD// EF$?
∴?$∠BDA = ∠BFE = 90°$?
∴?$AD⊥BC$?
證明:?$(1)$?設(shè)這個(gè)四位數(shù)是?$\overline {abcd},$?則?$\overline {abcd}=1000a + 100b + 10c + d$?
?$=(999a + 99b + 9c)+(a + b + c + d)$?
?$=3(333a + 33b + 3c)+(a + b + c + d)$?
?$ $?若?$a + b + c + d$?可以被?$3$?整除,∵?$3(333a + 33b + 3c)$?能被?$3$?整除
∴這個(gè)數(shù)?$\overline {abcd}$?可以被?$3$?整除
?$ (2) $?設(shè)?$y_{1} = x_{1}^2,$??$y_{2} = x_{2}^2,$?則?$y_{1} - y_{2} = x_{1}^2 - x_{2}^2=(x_{1} + x_{2})(x_{1} - x_{2})$?
?$ $?當(dāng)?$x_{1}>x_{2}>0$?時(shí),?$x_{1} + x_{2}>0,$??$x_{1} - x_{2}>0$?
∴?$(x_{1} + x_{2})(x_{1} - x_{2})>0,$?即?$y_{1} - y_{2}>0,$?∴?$y_{1}>y_{2}$?
解:都平行。下面以兩直線平行,內(nèi)錯(cuò)角的平分線平行為例進(jìn)行證明
已知:如圖,?$AB// CD,$??$EF $?與?$AB$?交于點(diǎn)?$E,$?與?$CD$?交于點(diǎn)?$F,$??$EM$?平分?$∠AEF,$??$FN$?平分?$∠EF D$?

求證:?$EM// FN$?
證明:∵?$AB// CD($?已知?$)$?
∴?$∠AEF = ∠EF D($?兩直線平行,內(nèi)錯(cuò)角相等)
∵?$EM$?平分?$∠AEF,$??$FN$?平分?$∠EF D($?已知?$)$?
∴?$∠MEF = \frac 12∠AEF,$??$∠EFN = \frac 12∠EF D($?角平分線的定義?$)$?
∴?$∠MEF = ∠EFN($?等量代換?$)$?
∴?$EM// FN($?內(nèi)錯(cuò)角相等,兩直線平行)