解:?$(2)$?∵?$∠BEC'=42°,$??$∠ADC'=20°$?
∴?$∠CEC'=180°-∠BEC'=138°,$??$∠CDC'=180°-∠ADC'=160°$?
由折疊得:?$∠CDE=∠C'DE=\frac 12∠CDC'=80°,$?
?$∠DEC=∠DEC'=\frac 12∠CEC'=69°$?
∴?$∠C=180°-∠EDC-∠DEC=31°$?
?$(3)$?如圖
∵?$∠BEC'=x,$??$∠ADC'=y$?
∴?$∠CEC'=180°-x,$??$∠1=180°+∠ADC'=180°+y$?
由折疊得:?$∠CDE=∠C'DE=\frac 12∠1=90°+\frac 12y,$?
?$∠DEC=∠DEC'=\frac 12∠CEC'=90°-\frac 12x$?
∴?$∠C=180°-∠EDC-∠DEC$?
?$=180°-(90°+\frac 12y)-(90°-\frac 12x)$?
?$=\frac 12x-\frac 12y$?
∴?$∠C$?與?$x,$??$y$?之間的數(shù)量關(guān)系:?$∠C=\frac 12x-\frac 12y$?