亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第32頁

第32頁

信息發(fā)布者:
解:大圓的直徑為?$a+2b,$?因此半徑為?$\frac {a+ 2b}2$?
面積為:?$ S_{大圓} = \pi (\frac {a+ 2b}2 )^2 = \pi (\frac {a^2 + 4ab + 4b^2}4 ) = \frac {\pi (a^2 + 4ab + 4b^2)}4 $?
三個小圓的直徑分別為?$a、$??$b、$??$b$?
因此半徑分別為?$\frac {a}2、$??$\frac 2、$??$\frac 2$?
面積分別為:?$ S_{小圓1} = \pi (\frac {a}2 )^2 = \frac {\pi a^2}4,$??$S_{小圓2} = \pi (\frac 2 )^2 = \frac {\pi b^2}4 $?
?$S_{小圓3} = \pi (\frac 2 )^2 = \frac {\pi b^2}4 $?
三個小圓的總面積為:?$ S_{小圓總} = \frac {\pi a^2}4 + \frac {\pi b^2}4 + \frac {\pi b^2}4 = \frac {\pi (a^2 + 2b^2)}4 $?
∴?$S_{剩下} = S_{大圓} - S_{小圓總} $?
?$= \frac {\pi (a^2 + 4ab + 4b^2)}4 - \frac {\pi (a^2 + 2b^2)}4 = \frac {\pi ( 4ab + 2b^2)}4 $?
解:∵?$x+y=3,$??$xy=1$?
∴?$(x+y)^2=x^2+y^2+2xy$?
∴?$x^2+y^2=7$?
?$(1)x^4+y^4=(x^2+y^2)^2-2x^2y^2=(x^2+y^2)^2-2(\mathrm {xy})^2$?
?$=7^2-2×1^2=47$?
?$(2)(x+1)(y+1)(x-1)(y-1)=[(x+1)(x-1)][(y+1)(y-1)]$?
?$=(x^2-1)(y^2-1)$?
?$=x^2y^2-x^2-y^2+1$?
?$=(\mathrm {xy})^2-(x^2+y^2)+1$?
?$=1^2-7+1$?
?$=-5$?