$解:??(2)①??設點??P??的橫坐標為??m,??則??S_{△PBO}=\frac 12BO ·m=2m??$
$?? ∵S_{△ODE}=S_{梯形EOAC}-S_{△CDE}-S_{△ODA}??$
$?? =\frac 12×(3+6)×4-\frac 12×3×2-\frac 12×6×2=9??$
$ 又??∵S_{△PBO}=\frac 89S_{△ODE}??$
$?? ∴S_{△PBO}=8,??即??2m=8,????m=4??$
$ ∵點??P??在雙曲線??y=\frac {12}x??上$
$ ∴點??P??的坐標為??(4,????3)??$
$ ②由①知,滿足??S_{△PBO}=\frac 89S_{△ODE}??的點??P??在橫坐標為??4??的直線上$
$ 即點??P ??在直線??x=4??上$
$ 當??O、????P、????E??三點共線時,??PO-PE??的值最大$
$ 設??OE??的解析式為??y=k_1x??$
$ ∵過點??E(3,????4)??$
$??∴4=3k_1,????k_1=\frac 43??$
$?? ∴OE??的解析式為??y=\frac 43x??$
$ 當??x=4??時,??y=\frac {16}3??$
$ ∴點??P??的坐標為??(4,????\frac {16}3)??$
$?? ③ Q_1(4,????4+2 \sqrt{3}) 、???? Q_2(4,????2 \sqrt{3}) 、???? Q_3(4,????-2 \sqrt{3}) 、???? Q_4(8,????2) ?$
?