$解:如圖,四邊形?AECF?是菱形$
$∴?AB=AC,??AM?平分?∠CAD?$
$∴?∠B=∠ACB,??∠CAD=2∠CAM?$
$∵?∠CAD?是?△ABC?的外角$
$∴?∠CAD=∠B+∠ACB?$
$∴?∠CAD=2∠ACB?$
$∴?∠CAM=∠ACB?$
$∴?AF//CE?$
$∵?EF?垂直平分?AC?$
$∴?OA=OC,??∠AOF=∠COF=90°?$
$∴?△AOF≌△COE?$
$∴?AF=CE.?在四邊形?AECF?中,?AF//CE,??AF=CE?$
$∴四邊形?AECF?是平行四邊形$
$又∵?EF⊥AC?$
$∴四邊形?AECF?是菱形$