$解:方程兩邊同時(shí)乘以(x-1)(x-2),得$
$(3x-5)(x-2)-(2x-5)(x-1)=(x-1)(x-2)$
$(3{x}^{2}-11x+10)-(2{x}^{2}-7x+5)={x}^{2}-3x+2$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {x}^{2}-4x+5={x}^{2}-3x+2$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=3$
$檢驗(yàn):當(dāng)x=3時(shí),(x-1)(x-2)≠0,$
$故x=3是原分式方程的解。$