$解:∵ 正方形?OABC?的邊長為?1?$
$∴? OC=OA=AB=BC=1,??∠OCB=90°,?$
$?∠COB=45°,??OC//AB?$
$在?Rt△OBC?中,∵? OC=BC=1?$
$∴? OB={\sqrt {{OC}^2+{BC}^2}}={\sqrt {2}}?$
$∵? OD=OC=1?$
$∴? BD=\sqrt {2}-1,?$
$?∠OCD=∠ODC=\frac {180°-45°}2=67.5°?$
$∴? ∠BDE=∠ODC=67.5°?$
$∵? OC//AB?$
$∴? ∠BED=∠OCD=67.5°?$
$∴? ∠BED=∠BDE?$
$∴? BD=BE=\sqrt {2}-1,??AE=1-(\sqrt {2}-1)=2-\sqrt {2}?$
$∴? E(1,??2-\sqrt {2})?$