$證明?: (1) ?∵ 菱形? A B C D, ?∴?A B=A D, ∠B=∠D ?$
$?\text { 又 } ?∵?A E \perp B C, A F \perp C D ?$
$∴?∠A E B=∠A F D=90° .?$
$在? \triangle A E B ?和? \triangle A F D ?中$
$?\begin {cases}{∠B=∠D }\\{∠A E B=∠A F D }\\{A B=A D}\end {cases}?$
$ ∴?\triangle A B E \cong \triangle A D F(\mathrm{AAS}), ?∴?A E=A F .?$
$?(2) ?∵ 菱形? A B C D \quad ?∴?∠B+∠B A D=180° ?$
$而? ∠B=60° ?∴?∠B A D=120° ,?$
$?\text { 又 } ?∵?∠A E B=90°, ∠B=60° ?$
$∴?∠B A E=30°?$
$由? (1) ?知? \triangle A B E \cong \triangle A D F ?$
$∴?∠B A E=∠D A F=30° ?$
$∴?∠E A F=120°-30°-30°=60°?$
$ ∴?\triangle A E F ?等邊 ,$
$∴?∠A E F=60°?$