?$證明:(1)連接PQ,如圖,$?
?$∵△ABC為等邊三角形,$?
?$∴∠BAC=60°,AB=AC,$?
?$∵線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,$?
?$∴AP=AQ,∠PAQ=60°,$?
?$∴△APQ為等邊三角形,$?
?$∴PQ=AP,$?
?$∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,$?
?$∴∠CAP=∠BAQ,$?
?$在△APC和△ABQ中,$?
?$\begin{cases}{AC=AB}\\{∠CAP=∠BAQ}\\{AP=AQ}\end{cases}$?
?$∴△APC≌△ABQ(\mathrm {SAS}),$?
?$∴PC=QB.$?
?$(2)連接PQ$?
?$∵△ABC為等邊三角形,$?
?$∴∠BAC=60°,AB=AC.\ $?
?$∵線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,$?
?$∴AP=AQ=6,∠PAQ=60°,$?
?$∴△APQ為等邊三角形,$?
?$∴PQ=AP=6.$?
?$∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,$?
?$∴∠CAP=∠BAQ.$?
?$在△APC和△AQB中,$?
?$\begin{cases}{AC=AB}\\{∠CAP=∠BAQ}\\{AP=AQ}\end{cases}$?
?$∴△APC≌△AQB(\mathrm {SAS}),$?
?$∴PC=QB=10.\\ $?
?$∵在△BPQ中,PB2=82,PQ=62,BQ2=102,$?
?$∴PB2+PQ2=BQ ,$?
?$∴△PBQ為直角三角形,∠BPQ=90°,$?
?$∴△APB的高=\frac{1}{2}AP=3$
$∴S△APB=\frac{1}{2}×PB×h=\frac{1}{2}×8×3=12$