$解:?(1)?由?CD=AB?可得,點(diǎn)?C?的坐標(biāo)為?(4,??3)?$
$ 設(shè)反比例函數(shù)的表達(dá)式為?y=\frac kx?$
$ 將點(diǎn)?C(4,??3)?代入得,?3=\frac k 4,??k=12?$
$ ∴反比例函數(shù)的表達(dá)式為?y=\frac {12}x?$
$? (2)?平移后點(diǎn)? D^{\prime} ?的坐標(biāo)為? (m,?? m+3)?$
$ 若點(diǎn)?D'?在反比例函數(shù)圖像上$
$ ∴? m ?滿足的表達(dá)式為? m+3= \frac {12}m ?$
$? (3)?翻折之后點(diǎn)? B^{\prime \prime} ?的坐標(biāo)為? (2,??6) ?$
$ 當(dāng)? x=2 ?時,? y=\frac {12}2=6?$
$ ∴點(diǎn)? B^{\prime \prime} ?在反比例函數(shù)的圖像上$