$解:?(1)?設(shè)運(yùn)動(dòng)時(shí)間為?ts?$
$由題意得?BP=AB-AP=(6-t)\mathrm {cm},??BQ=2t\mathrm {cm}?$
$∴?S_{△PBQ}=\frac 12(6-t)×2t=8?$
$解得?t_1=2,??t_2=4?$
$∴運(yùn)動(dòng)開始后?2s?或?4s,??△PBQ?的面積等于?8\ \mathrm {cm^2}?$
$?(2)?由題意得?S=6×12-\frac 12×(6-t)×2t=t^2-6t+72?$
$自變量?t?的取值范圍為?0≤t≤6?$
$?(3)S=t^2-6t+72=(t-3)^2+63?$
$當(dāng)?t=3?時(shí),?S?最小,最小為?63\ \mathrm {cm^2}?$