亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第52頁

第52頁

信息發(fā)布者:
$證明:∵?△ABC∽△A'B'C'?$
$又?AD、??BE?是?△ABC?的高,?A'D'、??B'E'?是?△A'B'C'?的高$
$∴?\frac {AD}{A'D'}=\frac {AB}{A'B'},??\frac {BE}{B'E'}=\frac {AB}{A'B'}?$
$∴?\frac {AD}{A'D'}=\frac {BE}{B'E'}?$

$解:連接?AP?并延長交?BC?于點?D?$
$∵點?P?為?△ABC?的重心$
$∴?\frac {AP}{AD}=\frac 23$
$?∵?EF//BC?$
$∴?△AEP∽△ABD,??△AEF∽△ABC$
$?∴?\frac {AE}{AB}=\frac {AP}{AD}=\frac 23?$
$∴?\frac {EF}{BC}=\frac {AE}{AB}=\frac 23$
$解:∵?DG//AB、??QH//BC ?$
$∴?△PKQ∽△DPE?$
$∴?\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}?$
$∴?\frac {KP}{PE}=\frac 12 ?$
$∴?\frac {KP}{KE}=\frac 13?$
$又∵?△KQP∽△KBE?$
$∴?\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19?$
$∴?\frac {4}{S_{△KBE}}=\frac 19 ?$
$∴?S_{△KBE}=36?$
$∴?S_{四邊形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16?$
$同理可求得?S_{四邊形CEPH}=24,??S_{四邊形AKPG}=12?$
$∴?S_{△ABC}=16+12+24+16+9+4=81?$
$證明:如圖四邊形?ABCD∽?四邊形?A'B'C'D'?$
$設相似比為?k,?則?\frac {AD}{A'D'}=\frac {DC}{D'C'}=k,??∠D=∠D'?$
$∴?△ADC∽△A'D'C'?$
$∴?\frac {AC}{A'C'}=\frac {AD}{A'D'}=k?$
命題得證
解:它們對應頂點相連形成的直線交于一點