$解:∵?DG//AB、??QH//BC ?$
$∴?△PKQ∽△DPE?$
$∴?\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}?$
$∴?\frac {KP}{PE}=\frac 12 ?$
$∴?\frac {KP}{KE}=\frac 13?$
$又∵?△KQP∽△KBE?$
$∴?\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19?$
$∴?\frac {4}{S_{△KBE}}=\frac 19 ?$
$∴?S_{△KBE}=36?$
$∴?S_{四邊形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16?$
$同理可求得?S_{四邊形CEPH}=24,??S_{四邊形AKPG}=12?$
$∴?S_{△ABC}=16+12+24+16+9+4=81?$