$解:?\sqrt 3-\sqrt 2<\sqrt 2-1,??\sqrt 4-\sqrt 3<\sqrt 3-\sqrt 2,??\sqrt 5-\sqrt 4<\sqrt 4-\sqrt 3?$
$猜想:?\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}(n?是大于等于?1?的正整數(shù))$
$證明:?\sqrt {n+1}-\sqrt {n}=\frac {(\sqrt {n+1}-\sqrt n)(\sqrt {n+1}+\sqrt n)}{\sqrt {n+1}+\sqrt n}=\frac 1{\sqrt {n+1}+\sqrt n}?$
$?\sqrt n-\sqrt {n-1}=\frac {(\sqrt n-\sqrt {n-1})(\sqrt n+\sqrt {n-1})}{\sqrt n+\sqrt {n-1}}=\frac 1{\sqrt n+\sqrt {n-1}}?$
$∵?\sqrt {n+1}+\sqrt n>\sqrt n+\sqrt {n-1}?$
$∴?\frac 1{\sqrt {n+1}+\sqrt n}<\frac 1{\sqrt n+\sqrt {n-1}}?$
$∴?\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}$