$解:連接?AO?并延長交?\odot O?于點(diǎn)?F,?連接?BC、??BF、??DF、??AD?$
$∵?AF?是直徑$
$∴?∠ADF=90°,??∠ABF=90°,??AB⊥BF?$
$∵?AB⊥CD?$
$∴?BF//CD?$
$∴?\widehat{BC}=\widehat{DF}?$
$∴?BC=DF?$
$在?Rt△AED、??Rt△BCE、??Rt△ADF?中$
$?AE^2+DE^2=AD^2,??CE^2+BE^2=BC^2=DF^2,??AD^2+DF^2=AF^2?$
$∴?AE^2+BE^2+CE^2+DE^2=AD^2+DF^2=AF^2?$
$∵?AF?是直徑$
$∴?AF=2,??AF^2=4?$
$∴?AE^2+BE^2+CE^2+DE^2=4?$