$解:過點?A ?作?CE⊥BC,?垂足為點?E。?設(shè)?CE=x?$
$①當(dāng)三角形?ABC?為銳角三角形時,?CE?在三角形的內(nèi)部$
$?AE^2=AC^2-CE^2=b^2-x^2,??BE=a-x?$
$在?Rt△ABE?中,?AB^2=BE^2+AE^2?$
$∴?c^2=(a-x)^2+b^2-x^2,??c^2=a^2+b^2-2ax?$
$∵?2ax>0?$
$∴?c^2<a^2+b^2?$
$②當(dāng)三角形?ABC?為鈍角三角形時,?CE?在三角形的外部$
$?AE^2=AC^2-CE^2=b^2-x^2,??BE=a+x?$
$在?Rt△ABE?中,?AB^2=BE^2+AE^2?$
$?c^2=(a+x)^2+(b^2-x^2)=a^2+b^2+2ax?$
$∵?2ax>0?$
$∴?c^2>a^2+b^2?$
$綜上所述:當(dāng)三角形?ABC?為銳角三角形時,?c^2<a^2+b^2?$
$當(dāng)三角形?ABC?為鈍角三角形時,?c^2>a^2+b^2?$