$解:?(1)?設(shè)?AC?與?BD?相交于點(diǎn)?O,?當(dāng)點(diǎn)?K?在?OB?上時(shí)$
$∵?O?是?AC?的中點(diǎn),?K?是?PQ?的中點(diǎn)$
$∴?PQ=2BK=2x?$
$∴?y=\frac 12x · 2x=x^2(0<x<1)?$
$當(dāng)點(diǎn)?K?在?OD?上運(yùn)動(dòng)時(shí),?KD=2-x?$
$∴?PQ=2(2-x),??y=\frac 12x · 2(2-x)=-x^2+2x(1≤x<2)?$
$∴所求的函數(shù)表達(dá)式為當(dāng)?0<x<1?時(shí),?y=x^2;?$
$當(dāng)?1≤x<2?時(shí),?y=-x^2+2x?$
$?(2)?函數(shù)圖像如圖所示$