$解:∵?BC=8,??BC?上的高為?6?$
$∴?△ABC?的面積?=\frac {1}{2}×8×6=24?$
$當(dāng)?0<x≤3?時(shí),如圖?(1),??$
$△A'MN?與四邊形?BCNM?重疊部分的面積?y=S_{△AMN}?$
$∵?MN//BC?$
$∴?△AMN∽△ABC?$
$∴?\frac {y}{24}=(\frac {x}{6})^2?$
$∴?y=\frac {2}{3}x^2?$
$當(dāng)?3<x<6?時(shí),如圖?(2),?重疊部分為梯形?MDEN?$
$∵?DE//MN?$
$∴?△AMN∽△ABC?$
$∴?MN:??BC=x:??6?$
$∴?MN:??8=x:??6?$
$∴?MN=\frac {4}{3}x?$
$∵?△AMN≌△A'MN?$
$∴?△A'DE?的邊?DE?的高是?2x-6?$
$∵?△A'DE∽△A'MN?$
$∴?DE:??MN=(2x-6):??x?$
$∴?DE:??\frac {4}{3}x=(2x-6):??x?$
$∴?DE=\frac {4}{3}(2x-6)?$
$∵梯形?MNED?的高是?6-x?$
$∴梯形?MNED?的面積?=\frac {1}{2}[\frac {4}{3}(2x-6)+\frac {4}{3}x](6-x)=-2x^2+16x-24?$
$∴?y=-2x^2+16x-24?$
$∴綜上所述,?y=\begin{cases}{\dfrac {2}{3}x^2(0<x≤3)}\\{-2x^2+16x-24(3<x<6)}\end{cases}?$