亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第130頁

第130頁

信息發(fā)布者:
$解:?(1)?經(jīng)測量?AE=1.5\ \mathrm {cm},??CE=0.75\ \mathrm {cm}?$
$?AE:??CE=2:??1?$
$?(2)?作?CH//AB?交?DF{于}H?$

$∵?CH//AB,??CD=BC?$
$∴?\frac {CH}{BF}=\frac {1}{2}?$
$∵點(diǎn)?F ?是?AB?的中點(diǎn)$
$∴?\frac {CH}{AF}=\frac {1}{2}?$
$∵?CH//AB?$
$∴?\frac {AE}{CE}=\frac {AF}{CH}=2?$
$?證明:(1)∵?CD⊥AB?$
$∴?∠ADC=∠BDC=90°?$
$∵?E?為?AC?的中點(diǎn)$
$∴?AE=DE?$
$∴?∠A=∠ADE?$
$∵?∠ADE=∠FDB?$
$∴?∠A=∠FDB?$
$∵?∠ADC=∠ACB=90°?$
$∴?∠A+∠ACD=90°,??∠ACD+∠BCD=90°?$
$∴?∠A=∠BCD=∠FDB?$
$∵?∠F=∠F?$
$∴?△FDB∽△FCD?$
$(更多請點(diǎn)擊查看作業(yè)精靈詳解)$
(更多請點(diǎn)擊查看作業(yè)精靈詳解)
$?解:(2)在?Rt△ACB?中,由勾股定理得:?$
$AB=\sqrt {AC^2+BC^2}=\sqrt {3^2+2^2}=\sqrt {13}? $
$∴?sin∠ABC=\frac {AC}{AB}=\frac {3\sqrt {13}}{13},??$
$cos∠ABC=\frac {BC}{AB}=\frac {2\sqrt {13}}{13}?$
$在?Rt△BCD?中,∵?BC=2?$
$∴?BD=BC · cos∠ABC=\frac {4\sqrt {13}}{13},??$
$CD=BC · sin∠ABC=\frac {6\sqrt {13}}{13}?$
$∴?S_{△CBD}=\frac 12BD×CD=\frac {12}{13}?$
$設(shè)?S_{△FDB}=x?$
$∵?△FDB∽△FCD?$
$∴?\frac {S_{△FDB}}{S_{△FCD}}=(\frac {BD}{CD})^2=\frac 49?$
$∴?S_{△FCD}=\frac 94x?$
$∴?\frac 94x-x=\frac {12}{13}?$
$解得?x=\frac {48}{65}?$
$∴?S_{△FDB}=\frac {48}{65}?$
$解:∵?BC=8,??BC?上的高為?6?$
$∴?△ABC?的面積?=\frac {1}{2}×8×6=24?$
$當(dāng)?0<x≤3?時(shí),如圖?(1),??$
$△A'MN?與四邊形?BCNM?重疊部分的面積?y=S_{△AMN}?$
$∵?MN//BC?$
$∴?△AMN∽△ABC?$
$∴?\frac {y}{24}=(\frac {x}{6})^2?$
$∴?y=\frac {2}{3}x^2?$
$當(dāng)?3<x<6?時(shí),如圖?(2),?重疊部分為梯形?MDEN?$
$∵?DE//MN?$
$∴?△AMN∽△ABC?$
$∴?MN:??BC=x:??6?$
$∴?MN:??8=x:??6?$
$∴?MN=\frac {4}{3}x?$
$∵?△AMN≌△A'MN?$
$∴?△A'DE?的邊?DE?的高是?2x-6?$
$∵?△A'DE∽△A'MN?$
$∴?DE:??MN=(2x-6):??x?$
$∴?DE:??\frac {4}{3}x=(2x-6):??x?$
$∴?DE=\frac {4}{3}(2x-6)?$
$∵梯形?MNED?的高是?6-x?$
$∴梯形?MNED?的面積?=\frac {1}{2}[\frac {4}{3}(2x-6)+\frac {4}{3}x](6-x)=-2x^2+16x-24?$
$∴?y=-2x^2+16x-24?$
$∴綜上所述,?y=\begin{cases}{\dfrac {2}{3}x^2(0<x≤3)}\\{-2x^2+16x-24(3<x<6)}\end{cases}?$