亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第41頁(yè)

第41頁(yè)

信息發(fā)布者:
$解:∵?DE//BC?$
$∴?△ADE∽△ABC?$
$∴?\frac {DE}{BC}=\frac {AE}{AC}?$
$∵?\frac {AE}{EC}=\frac 12?$
$∴?\frac {DE}{BC}=\frac {AE}{AC}=\frac 13?$
$∵?DE//BC?$
$∴?∠ODE=∠OCB?$
$∵?∠DOE=∠BOC?$
$∴?△DOE∽△BOC,?且相似比為?1 :?? 3?$
$∴?△DOE?與?△BOC?的周長(zhǎng)比為?1 :??3,?面積比為?1 :??9?$
$解:???(1)???∵???AD//BC???$
$∴???∠DAO=∠OCB???$
$∵???∠AOD=∠BOC???$
$∴???△AOD∽△COB???$
$∵???△AOD???的面積與???△BOC???的面積之比為???1:??????9???$
$∴???AD:??????BC=1:??????3???$
$???(2)???∵???△AOD∽△COB,??????AD:??????BC=1:??????3???$
$∴???OD:??????OB=AD:??????BC=1:??????3???$
$∴???S_{△AOD}:??????S_{△AOB}=1:??????3???$
$∵???△AOB???的面積為???6???$
$∴???S_{△AOD}=2,??????S_{△ABD}=8???$
$∵???S_{△ABD}:??????S_{△BCD}=AD:??????BC=1:??????3???$
$∴???S_{△BCD}=24???$
$∴???S_{梯形ABCD}=S_{△ABD}+S△ BCD=32???$
$解:作??AG⊥BC,??垂足為??G??$

$∵??AD=AC??$
$∴??∠ACB=∠FDC??$
$∵點(diǎn)??D??是??BC??的中點(diǎn)$
$∴??DB=DC??$
$∵??DE⊥BC??$
$∴??∠EDB=∠EDC=90°??$
$在??△BDE??和??△CDE??中$
$??\begin{cases}{DE=DE}\\{∠EDB=∠EDC}\\{DB=DC}\end{cases}??$
$∴??△BDE≌△CDE(\mathrm {SAS})??$
$∴??∠FCD=∠ABC??$
$∵??∠FDC=∠ACB??$
$∴??△FCD∽△ABC,??且相似比為??CD:????BC=1:????2??$
$∴??S_{△ABC}=4S_{△FCD}??$
$∵??S_{△FCD}=5??$
$∴??S_{△ABC}=\frac 12×BC×AG=20??$
$∵??BC=10??$
$∴??AG=4??$
$∵點(diǎn)??D??為??BC??的中點(diǎn)$
$∴??BD=CD=5??$
$∵??AD=AC,????AG⊥BC??$
$∴點(diǎn)??G??為??CD??的中點(diǎn),??DG=\frac 12CD=\frac 52??$
$∴??BG=BD+DG=\frac {15}{2}??$
$∵??DE⊥BC??$
$∴??DE//AG??$
$∴??△BDE∽△BGA??$
$∴??\frac {BD}{BG}=\frac {DE}{AG}??$
$∵??BD=5,????BG=\frac {15}{2},????AG=4??$
$∴??\frac 5{\frac {15}{2}}=\frac {DE}4??$
$∴??DE=\frac 83??$
$解:由???△ADE∽△ABC,???得???\frac {S_{△ADE}}5=(\frac {AD}{AB})^2=x^2,???$
$???S_{△ADE}=5x^2???$
$又???\frac y{S_{△ADE}}=\frac {BD}{AD}=\frac {AB-AD}{AD}=\frac {AB}{AD}-1=\frac 1{x}-1???$
$∴???y=(\frac 1{x}-1) · S_{△ADE}=(\frac 1{x}-1) · 5x^2=5x-5x^2???$
$∴???y=5x-5x^2(0<x<1)???$