$解?: (1)?設(shè)拋物線?{C}_1?的函數(shù)表達(dá)式為?y= ax2+ bx +c?$
由題意得,
$?\begin{cases}{0=16a-4b+c}\\{-\dfrac {2a}=-1.5}\\{6=a-b+c} \end{cases}?$
$解得?a=-1,b=-3,c=4?$
$所以拋物線?{C}_1?的函數(shù)表達(dá)式為?y= -x2- 3x +4?$
$?(2)?拋物線?{C}_2?的圖像如圖所示,$
$設(shè)拋物線?{C}_2?的函數(shù)表達(dá)式為?y= dx2+ex+f ,?$
$則拋物線?{C}_2?與?x?軸交點(diǎn)為?(4 , 0) ,?對(duì)稱軸所在直線為?x = 1.5, ?$
$且拋物線過(guò)點(diǎn)?(1.-6)。?$
由題意得,
$?\begin{cases}{16d+4e+f=0 }\\{-\dfrac {c}{2d}=1.5}\\{d+e+f=-6} \end{cases}?$
$所以?d=1,e=-3,f=-4?$
$拋物線?{C}_2?的函數(shù)表達(dá)式為?y=x2-3x-4?$
$?(3)?由題意得,?-x2-3x+4=x2-3x-4,?$
$解得,?x=±2?$
$所以點(diǎn)?A?橫坐標(biāo)為?-2 ,?點(diǎn)?B?橫坐標(biāo)為?2 ?$
$設(shè)點(diǎn)?P?的橫坐標(biāo)為?t ,?則點(diǎn)?P?坐標(biāo)為?(t,-t2 - 3t +4)?$
$因?yàn)?PQ//y?軸,點(diǎn)?P?的橫坐標(biāo)為?t ,?$
$所以點(diǎn)?Q?的橫坐標(biāo)也為?t?$
$因?yàn)辄c(diǎn)?Q?在拋物線?{C}_2?上,$
$所以點(diǎn)?Q_{坐標(biāo)} ?為?(t,t2- 3t- 4)?$
$所以?PQ=(-t2-3t+4)- (t2- 3t-4)=-2t2+ 8?$
$因?yàn)辄c(diǎn)?P{位于} ?點(diǎn)?A?和點(diǎn)?B?之間, $
所以t的取值范圍為- 2<t<2.
所以當(dāng)t= 0時(shí), PQ取最大值,最大值為8