$解?:(1)?如圖,過點(diǎn)?B?作?BM⊥CD?于點(diǎn)?M,?$
$則?∠DBM=∠BDN=30°.?$
$在?Rt△BDM?中?,BM=AC=243\ \mathrm {m}, ∠DBM = 30°,?$
$所以?DM= BM×tan∠DBM=24\sqrt{3}×\frac {\sqrt{3}}{3}=24(\mathrm {m}) ?$
$所以?AB=CM=CD-DM=49.6-24=25. 6(\mathrm {m}).?$
$答:教學(xué)樓?AB?的高度為?25.6\ \mathrm {m}.?$
$?(2)?如圖,連接?EB?并延長交?DN?于點(diǎn)?G,?$
$則?∠DGE=∠MBE.?$
$在?Rt△EMB?中?,BM =AC =24\sqrt{3}m, EM =CM-CE=24\ \mathrm {m},?$
$所以? tan∠MBE=\frac {EM}{BM}=\frac {24}{24\sqrt{3}}=\frac {\sqrt{3}}{3}. ?$
$所以?∠MBE=30°=∠DGE.?$
$因?yàn)?∠EDG=90°.?$
$所以?∠DEG =90° - 30° = 60°.?$
$在?Rt△EDG ?中?,DE=CD-CE=48\ \mathrm {m},?$
$所以?DG=DE×tan 60° =48\sqrt{3}m.?$
$?48\sqrt{3}÷4\sqrt{3}=12(\mathrm {s}).?$
$所以經(jīng)過?12\ \mathrm {s}?時,無人機(jī)剛好離開了圓圓的視線.$